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Individual variation in susceptibility and exposure is subject to selection by natural infection, accelerat-
ing the acquisition of immunity, and reducing herd immunity thresholds and epidemic final sizes. This is
a manifestation of a wider population phenomenon known as ‘‘frailty variation”. Despite theoretical
understanding, public health policies continue to be guided by mathematical models that leave out con-
siderable variation and as a result inflate projected disease burdens and overestimate the impact of inter-
ventions. Here we focus on trajectories of the coronavirus disease (COVID-19) pandemic in England and
Scotland until November 2021. We fit models to series of daily deaths and infer relevant epidemiological
parameters, including coefficients of variation and effects of non-pharmaceutical interventions which we
find in agreement with independent empirical estimates based on contact surveys. Our estimates are
robust to whether the analysed data series encompass one or two pandemic waves and enable projec-
tions compatible with subsequent dynamics. We conclude that vaccination programmes may have con-
tributed modestly to the acquisition of herd immunity in populations with high levels of pre-existing
naturally acquired immunity, while being crucial to protect vulnerable individuals from severe outcomes
as the virus becomes endemic.
� 2022 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Almost 100 years ago, Kermack and McKendrick (1927) pub-
lished a general and flexible model to study epidemics and fitted
particular versions to observed epidemics (Kermack and
McKendrick, 1927; McKendrick, 1939). Already back then they
alerted for the simplifying assumption ”that all infected persons
are equivalent, and that all susceptible persons are equally liable
to acquire infection” (McKendrick, 1939). In their fittings they
adjust not only transmission parameters but also the size of the
susceptible and exposed populations at epidemic onset. Suscepti-
ble and exposed population sizes needed to be adjusted so their
homogeneous models could fit the data.

Thirty years later, Gart (1968) admited that ‘‘it is difficult to
define exactly the size of the population of susceptible hosts. In this
instance the difficulty is associated with the heterogeneous nature
of the population”. The author divided the population in two groups,
depending on individual histories of infection, and allowed much
greater susceptibility in the group with no previous infections. This
did not seem sufficient to provide good fit to observed epidemics as
the author adds ‘‘we assume that the first group is a homogeneous
group of susceptibles, while the second is actually a mixture of
immune and susceptible individuals”. In Gart (1971) the author
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Fig. 1. Susceptible-exposed-infected-recovered (SEIR) model representing the
transmission dynamics of SARS-CoV-2 in a heterogeneous host population.
Individual susceptibility or exposure to infection is denoted by x.
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extended themodel to several susceptibility groups, and,more than
a decade later, Ball (1985) compared a model with several suscepti-
bility groups to the homogeneous version and described howhomo-
geneity assumptions increase epidemic size. Coutinho et al. (1999)
expanded the formalisms to also account for individual variation
in incubation period and recovery but concluded that ‘‘at present
practical applications might be difficult”. Pastor-Satorras and
Vespignani (2001) developed related formalisms to describe epi-
demics on contact networks.

Meanwhile, frailty variation had been formalised in demogra-
phy (Vaupel et al., 1979) and introduced in practical survival anal-
ysis (Hougaard, 1984; Aalen, 1988) and non-communicable disease
epidemiology to improve model fits and interpretation (for a
review see Aalen et al., 2015 and references therein).

On the experimental side, Dwyer et al. (1997) measured nonlin-
ear relationships between transmission and densities of suscepti-
ble hosts, implying that the bilinear term in the classical
susceptible-infected-recovered (SIR) model may not be appropri-
ate. The authors attributed the nonlinearity in transmission to
heterogeneity in host susceptibility to infection which they esti-
mated from the shapes of dose–response curves. Finkenstädt and
Grenfell (2000) fitted a model with nonlinear relationships
between transmission and density of susceptible hosts to an
observed epidemic and estimated the exponent, which they inter-
preted as heterogeneity in mixing. Novozhilov (2008) derived the
expressions for the exponents from explicit gamma distributions
of susceptibility and Montalbán et al. (2020) provided a more tract-
able derivation that applies exactly to heterogeneity in susceptibil-
ity and approximately to heterogeneity in exposure to infection.

Here we build on this history and analyse the coronavirus dis-
ease (COVID-19) pandemic, caused by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), with frailty variation mod-
els. The study is focused on England and Scotland, where the infec-
tion was first detected in early 2020, with major waves of the
disease occurring in the spring of the same year and in the
autumn–winter season of 2020–2021.

We use susceptible-exposed-infected-recovered (SEIR) models
(Diekmann et al., 2013) incorporating continuous distributions of
individual susceptibility or exposure to infection (Ball, 1985;
Pastor-Satorras and Vespignani, 2001; Novozhilov, 2008; Katriel,
2012; Gomes, 2020). We then use Bayesian inference to estimate
model parameters by fitting series of deaths while accounting for,
and estimating the magnitude of, the combined effects of non-
pharmaceutical interventions (NPIs), voluntary behavioural change,
seasonality, viral evolution, and any other factors whichmight have
contributed to time dependency in transmission potential. We esti-
mate basic reproduction numbers (R0) consistent with early litera-
ture (Flaxman et al., 2020; Hilton and Keeling, 2020; Kwok et al.,
2020) and coefficients of variation in agreement with direct mea-
surements based on contact-pattern studies (Mossong et al., 2008;
Hens et al., 2009;Willem et al., 2012).We show that individual vari-
ation in susceptibilityor exposure to infectioncansignificantly affect
basicmetrics, such as the herd immunity thresholds (HIT), aswell as
model projections and assessment of intervention impacts.

2. Mathematical models

The basic compartmental SEIR model (Diekmann et al., 2013)
describing the transmission dynamics of SARS-CoV-2 is repre-
sented diagrammatically in Fig. 1. The model accounts for individ-
ual variation in susceptibility or exposure to infection.

2.1. Individual variation in susceptibility to infection

Let x denote the individual susceptibility to infection in relation
to the mean, which we describe by a continuous distribution qðxÞ
2

with mean
R
xqðxÞdx ¼ 1 parametrised by a coefficient of variation

(CV), m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR ðx� 1Þ2qðxÞdx

q
. Susceptible individuals, SðxÞ, become

exposed at a rate that depends on their susceptibility, x, and on
the average force of infection, k, which accounts for the total num-
ber of infectious individuals in the population over time. Upon
exposure, susceptible individuals enter an incubation phase, EðxÞ,
during which they gradually become infectious (Wei et al., 2020;
To et al., 2020; Arons et al., 2020; He et al., 2020). The average
infectiousness in this phase is made to be half that in the following
state (q ¼ 0:5), to which individuals progress within an average of
5.5 days (d ¼ 1=5:5 per day) (McAloon et al., 2020; Lauer et al.,
2020). The fully infectious state is denoted by IðxÞ. Infected individ-
uals eventually become noninfectious, on average approximately
4 days after becoming fully infectious (c ¼ 1=4 per day) (Nishiura
et al., 2020; Li et al., 2020). A small fraction, /ðxÞ, die due to
COVID-19 while the remaining majority recover into RðxÞ where
they are noninfectious and resistant to reinfection due to acquired
immunity. The model is formalised mathematically by the infinite
system of ordinary differential equations (ODEs):

dSðxÞ
dt

¼� k x SðxÞ; ð1Þ
dEðxÞ
dt

¼k x SðxÞ � d EðxÞ; ð2Þ
dIðxÞ
dt

¼d EðxÞ � c IðxÞ; ð3Þ
dRðxÞ
dt

¼ 1� /ðxÞð Þ c IðxÞ: ð4Þ

The average force of infection upon susceptible individuals in a pop-
ulation of size N and transmission coefficient b is defined by

k ¼ b
N

Z
qEðxÞ þ IðxÞð Þ dx: ð5Þ

An epidemic is simulated by introducing a small seed of infectious
individuals in a susceptible population. Initial growth of infected
densities is near exponential but decelerates as individuals are
removed from the susceptible pool by infection and immunity.
With variation in susceptibility, highly susceptible individuals tend
to be infected earlier, leaving behind a residual pool of lower mean
susceptibility. This selective depletion intensifies the deceleration
of epidemic growth and gives an efficient head start to the acquisi-
tion of population immunity. Eventually the epidemic will subside
and the HIT, defining the percentage of the population that needs
to be immune to reverse epidemic growth and prevent future
waves, is lower when variation in susceptibility is higher.

The basic reproduction number, defined as the number of infec-
tions caused by an average infected individual in a totally suscep-
tible population, is written for system (1)-(4) with force of
infection (5) as

R0 ¼ b
q
d
þ 1
c

� �
: ð6Þ

This is an indicator of early transmissibility but its use quickly
becomes cumbersome. Several factors, such as NPIs, adaptive
changes in human behaviour, seasonality and viral evolution, affect
R0 in a time-dependent manner. We denote the resulting quantity
by RcðtÞ ¼ cðtÞ �R0, where cðtÞ > 0 describes the basic risk of infec-
tion at time t in relation to baseline.
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In the estimation ofRcðtÞwe assume a stylised profile for cðtÞ as
illustrated in Fig. 2: T0 is time when R0 begins to show decrease
due to behavioural change or seasonality; L1 is the period of max-
imal transmission reduction due to a first lockdown in spring 2020
(48 days in England, from 26 March to 12 May; and 66 days in
Scotland, from 24 March to 28 May) and c1 6 1 is the value of
RcðtÞ during L1 in relation to the initial R0; T1 (> T0) is the day first
lockdown begins (transmission is allowed to decrease linearly
between T0 and T1). After L1, contact restrictions are gradually
relaxed and we allow transmission to begin a linear increase such
that cðtÞ reaches the baseline (cðtÞ ¼ 1) in T2 days, which may or
may not be within the range of this study. Changes in non-
behavioural factors that affect transmission (such as seasonality
or viral evolution) are inseparable from contact changes in this
framework and are also accounted for by cðtÞ.

The model will be used to analyse COVID-19 deaths recorded
over approximately one year. Mathematically the time-
dependent cðtÞ is constructed as

c0ðtÞ ¼

1; if 0 < t 6 T0;

1� ð1� c1Þ � t�T0
T1�T0

; if T0 < t 6 T1;

c1; if T1 < t 6 T1 þ L1;

1� ð1� c1Þ � T1þL1þT2�t
T2

; otherwise:

8>>>><
>>>>:

ð7Þ

Second and third lockdowns in the autumn and winter are imple-
mented more simply as a further reduction in transmission (by a
factor c2) over the stipulated time periods. Specifically,

cðtÞ ¼
c2 � c0ðtÞ; if t 2 ½5 November2020;1December2020�;

or t from 5 January 2021 onwards;
c0ðtÞ; otherwise:

8><
>:

ð8Þ
A finite version of system (1)-(4) with variable susceptibility force
of infection (5) can be derived exactly, taking a previously obtained
form when individual susceptibility is gamma distributed
(Novozhilov, 2008; Montalbán et al., 2020):

d S

dt
¼ �b q Eþ Ið Þ S

N

� �1þm2

; ð9Þ

d E

dt
¼ b q Eþ Ið Þ S

N

� �1þm2

� d E; ð10Þ

d I

dt
¼ d E� cI; ð11Þ

d R

dt
¼ ð1� /Þ c I: ð12Þ
Fig. 2. Schematic illustration of the factor cðtÞ, representing the combined effects of NPIs
number. L1; L2 and L3 represent the known durations (and timings) of first, second and thi
time period included in our analyses, with a note that the third set of restrictions was sti
prior to gradual contact reductions early in the pandemic (estimated). T1 (> T0) is the da
increasing transmission after first lockdown to return to baseline cðtÞ ¼ 1 (technically, thi
that it will continue to follow the trend beyond the study period). Whether cðtÞ is allowed
consistently find the factor to remain below baseline throughout the study period.

3

Notice that individuals leave compartment I at a rate c but only a
fraction 1� / recovers from infection. The remaining fraction, /,
die due to COVID-19, g days after leaving compartment I. We refer
to / as the infection fatality ratio (IFR).

HadR0 remained constant throughout study duration, the effec-

tive reproduction number would have been R0 S=Nð Þ1þm2 as in
Montalbán et al. (2020).More typical, however, is forR0 to varywith
seasonal effects (Nickbakhsh et al., 2020; Kissler et al., 2020; Bacaer
et al., 2009) and viral evolution (Public Health England, 2021) lead-
ing to an effective reproduction number modified as

ReffðtÞ ¼ RcðtÞ S

N

� �1þm2

: ð13Þ

Here, nevertheless, we present HIT estimates elicited by natural
infection in reference to the original R0, as derived in Montalbán
et al. (2020)

H ¼ 1� 1
R0

� � 1
1þm2

; ð14Þ

highlighting that these refer to the SARS-CoV-2 of early 2020;
higher thresholds will be expected for more transmissible variants.
Once reliable estimates become available for evolving transmissibil-
ity, HIT estimates can be updated.

As infection spreads, the susceptible compartment, S, is
depleted and recovered individuals populate compartment R

where they are protected by acquired immunity. In reality, they
eventually lose that protection as immunity wanes or is evaded
by new viral variants. In addition, the population slowly renews
itself through all-cause death of individuals with various levels of
acquired immunity and birth of new susceptibles. These processes
are omitted in this version of the model given our purpose to anal-
yse data reported over a 1-year period when the frequency of rein-
fection has been relatively low in our study setting (Hall et al.,
2021) and population renewal considered negligible. In Supple-
mentary Material (Section S1) we formulate an extended model
with reinfection and conduct exploratory sensitivity analyses.

2.2. Individual variation in exposure to infection

In a directly transmitted infectious disease, such as COVID-19,
variation in exposure to infection is primarily governed by patterns
of connectivity among individuals. We incorporate this in system
(1)-(4) assuming that individuals mix at random (Pastor-Satorras
and Vespignani, 2001; Miller et al., 2012). In a related study we
developed an assortative mixing version of the model (Aguas
et al., 2020). With randommixing and heterogeneous connectivity,
the force of infection is written
, adaptive behavioural changes, seasonality and viral evolution on the reproduction
rd lockdowns, respectively, as imposed by governments. The grey area illustrates the
ll in place when the data fitting period ended. T0 is the number of days in the series
y first lockdown begins (informed by data). T2 is the number of days for the ramp of
s is estimated and used to define the slope of the linear increase rather than to imply
to increase beyond baseline (solid) or not (dashed) does not affect our results as we
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k ¼ b
N

R
x qEðxÞ þ IðxÞð Þ dxR

xqðxÞ dx : ð15Þ

The basic reproduction number is

R0 ¼ 1þ m2
� �

b
q
d
þ 1
c

� �
; ð16Þ

and RcðtÞ ¼ cðtÞ �R0 as above.
Model (1)-(4) with variable exposure force of infection (15) can

also be reduced to a finite system of ODEs when individual connec-
tivity is gamma distributed, although, in contrast with variable
susceptibility, the derivation is approximate in this case
(Montalbán et al., 2020):

d S

dt
¼ � 1þ m2

� �
b q Eþ Ið Þ S

N

� �1þ2m2

; ð17Þ

d E

dt
¼ 1þ m2

� �
b q Eþ Ið Þ S

N

� �1þ2m2

� d E; ð18Þ

d I

dt
¼ d E� c I; ð19Þ

d R

dt
¼ ð1� /Þ c I: ð20Þ

The effective reproduction number is

ReffðtÞ ¼ RcðtÞ S

N

� �1þ2m2

; ð21Þ

and the natural HIT

H ¼ 1� 1
R0

� � 1
1þ2m2

: ð22Þ

We emphasise that formulas (14) and (22) refer to herd immu-
nity by natural infection and do not apply to herd immunity
induced by vaccines (unless vaccination programmes were
designed to mimic the selection exerted by natural infection which
is not generally the case Fine et al., 2011). For a random vaccination
programme, the HIT induced by the vaccine would be
HV ¼ ½1=ð1� rV Þ� � ð1� 1=R0Þ, where rV is the susceptibility of a
vaccinated individual relative to unvaccinated. As a corollary, the
HIT can only be reached by random vaccination if the vaccines in
use are more than 1� 1=R0 efficacious against infection. For exam-
ple, achieving the random vaccination HIT requires a vaccine that
is at least 67% efficacious if R0 ¼ 3, and 80% efficacious if
R0 ¼ 5, assuming 100% coverage. With lower coverage the
demand on vaccine efficacy increases. This paper addresses pri-
marily the natural HIT (H).

3. Data

We used publicly available epidemiological data from the UK
coronavirus dashboard describing the unfolding of the SARS-CoV-
2 epidemic [https://coronavirus.data.gov.uk/] to estimate relevant
transmission parameters for the larger nations: England (56 mil-
lion population) and Scotland (5.5 million). Spefically, we extracted
datasets containing daily deaths (deaths within 28 days of positive

test by date of death), fðk; ykÞgn�1
k¼0 , where k ¼ 0 is the day when the

cumulative rolling average of death numbers exceeded 5 � 10�8 of
the population in both nations (10 March 2020). We also extracted,
from the same source, data on the population considered fully vac-
cinated (two doses) at the time of this study.

Model outputs would then be fitted to the raw series of daily
deaths between 10 March 2020 and 1 February 2021 (329 days
4

in total) or 1 July 2020 (114 days) adopting an IFR of / ¼ 0:9%
(Ward et al., 2021; Chen et al., 2021) throughout the fitted period.
Birrel et al. (2021) estimate that the IFR fluctuated between about
0:3% and 1:3% prior to vaccination, with a tendency to be low
when infection spreads generally in the community and high when
spread is predominantly in care homes and hospitals (McKeigue
et al., 2021). We assumed constant IFR but explored sensitivity of
results to its value (see Supplementary Material (Section S2) for
results on / ¼ 0:7% and / ¼ 1:0%).

Initial conditions were set by solving the linear system of ODEs
obtained by neglecting depletion of susceptibles in (9)-(12) (i.e.,
dE=dt ¼ bðqEþ IÞ � dE; dI=dt ¼ dE� cI; dR=dt ¼ ð1� /ÞcI) for an
early R0 ¼ 2 (Li et al., 2020; Kissler et al., 2020), to find approxi-
mate relationships between variables (conditioning this on higher
early transmission potential, such as R0 ¼ 3, does not significantly
change the results but leads to worse fits due to mismatch with
early death counts). These approximations concerning the very
early days of the epidemic enabled us to constrain the initial con-
ditions as Ið�gÞ ¼ y0=0:002;Eð�gÞ ¼ Ið�gÞ=0:136 and
Sð�gÞ ¼ N� Eð�gÞ � Ið�gÞ, where g is the excess duration of a
fatal infection relative to non-fatal, and y0 is the number of deaths
in the first day of the study. These numerical values are in the order
of Ið�gÞ � y0=½/ð1� expð�cÞÞ� and Eð�gÞ � Ið�gÞ=ð1� expð�dÞÞ,
which is expected early in the pandemic given the rates of progres-
sion from I to death and from E to I, respectively.
4. Model fitting and parameter estimation

In order to preserve identifiability, wemade sixmain simplifying
assumptions: (i) reinfection is negligible (see Section S2 for an
exploratory sensitivity analysis to reinfection); (ii) the IFR is con-
stant throughout thefittedperiod (in Section S3weexplore sensitiv-
ity analysis to IFR) but lowerdue to vaccination in interpretationand
counterfactuals (Section 5.6); (iii) vaccine effects are negligible dur-
ing the fitted period, which in Sections 5.1 and 5.3 end 1 February
2021 (less than1% fully vaccinated in theUK) and in Section5.2 ends
1 July 2020 (no vaccines in use), but represented in projections
beyond this phase as appropriate (in particular Section 5.6); (iv) nat-
ural (seasonality, viral evolution and adaptive behavioural change)
and interventional (NPI) modulators of the reproduction number
are encapsulated in a single time varying parameter cðtÞ as illus-
trated in Fig. 2; (v) second and third lockdowns impact cðtÞ by the
same factor; (except in Section 5.3 were a more data-driven
approach is attempted); (vi) excess transmission from critically ill
stages is negligible.

Parameter estimation was performed with software MATLAB
(MathWorks, Natick, MA) using the PESTO (Parameter EStimation
TOolbox) package (Stapor et al., 2018). We assumed that numbers
of SARS-CoV-2 infections are Poisson distributed.

We tried to reproduce the dynamics of COVID-19 deaths by esti-
mating the set of parameters h that maximises the log-likelihood
(LL) of observing the daily numbers of reported deaths Y:

LLðhjYENGÞ¼�
Xn�1

k¼0

~yENGðk;hÞþ
Xn�1

k¼0

yENGðkÞ lnð~yENGðk;hÞÞ�
Xn�1

k¼0

lnðyENGðkÞ!Þ;

ð23Þ

LLðhjYSCTÞ¼�
Xn�1

k¼0

~ySCTðk;hÞþ
Xn�1

k¼0

ySCTðkÞ lnð~ySCTðk;hÞÞ�
Xn�1

k¼0

lnðySCT ðkÞ!Þ;

ð24Þ
LLðhjYÞ¼LLðhjYENGÞþLLðhjYSCTÞ;

ð25Þ

in which ~yENGðk; hÞ ¼ /c IENGðk� g; hÞ and ~ySCTðk;hÞ¼/c ISCTðk�g;hÞ
are the model output numbers of COVID-19 deaths at day k in
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England and Scotland for the set of parameters

h;YENG ¼fðk;yENGk Þgn�1
k¼0 and fðk;ySCTk Þgn�1

k¼0 are the numbers of daily
reported deaths, and n is the total number of days included in the
analysis.

The set of parameters to be estimated is

h ¼ fc1; c2;g; m; TENG
0 ; TSCO

0 ; TENG
2 ; TSCO

2 ;RENG
0 ;RSCO

0 g; ð26Þ

when fitting longer time series (Section 5.1) and

h ¼ fc1;g; m; TENG
0 ; TSCO

0 ;RENG
0 ;RSCO

0 g; ð27Þ

in fittings to shorter versions (Section 5.2).
To ensure that the estimated maximum is a global maximum,

we performed 50 multi-start optimisations with initialisation
parameters sampled from a Latin hypercube. The combination of
parameters resulting in the maximal LL were used as a starting
point for 10;000 Markov chain Monte-Carlo (MCMC) iterations.
From the resulting posterior distributions, we extracted the med-
ian estimates for each parameter and the respective 95% credible
intervals. We used uniformly distributed priors with wide ranges.
Fig. 3. SARS-CoV-2 transmission in England and Scotland with individual variati
distributions (reduced model (9)-(12)). Modelled trajectories of COVID-19 deaths (black)
fitted (green); out-of-sample (red). Basic reproduction numbers under control (Rc) dis
segments as solid curves and projected scenarios as dashed. Right panels prolong those p
E to I (d ¼ 1=5:5 per day); recovery (c ¼ 1=4 per day); relative infectiousness between
coefficients of variation and control parameters estimated by Bayesian inference (estim
credible intervals generated from 10;000 posterior samples.

5

We applied the outlined fitting procedure using both hetero-
geneity models (specifically individual variation in susceptibility
and individual variation in exposure to infection) as well as a
homogeneity model (obtained by setting the coefficient of varia-
tion to zero (m ¼ 0) in either model). The Akaike information crite-
rion (AIC) was applied to select best fitting models.
5. Results

5.1. Estimated parameters and herd immunity thresholds

Variable susceptibility, variable connectivity and homogeneous
models were fitted to series of COVID-19 deaths reported in Eng-
land and Scotland until 1 February 2021. The fits are shown in
Figs. 3–5 (black solid curves; fitted data points in green), and the
estimated parameters in Table 1. Maximum LL are also displayed,
as well as AIC scores for model selection. We conclude that variable
susceptibility and variable connectivity models are better
supported by the data than the homogeneous model (lowest AIC
in bold), as found in related studies (Aguas et al., 2020; Colombo
on in susceptibility to infection. Susceptibility factors implemented as gamma
and cumulative percentage infected (blue). Dots are data for daily reported deaths:
played in shallow panels underneath the main plots. Left panels represent fitted
rojections further in time assuming RcðtÞ ¼ R0. Input parameters: progression from
E and I stages (q ¼ 0:5); and IFR (/ ¼ 0:9%). Initial basic reproduction numbers,

ates in Table 1). Fitted curves represent best fitting trajectories and shades are 95%



Fig. 4. SARS-CoV-2 transmission in England and Scotland with individual variation in exposure to infection. Connectivity factors implemented as gamma distributions
(reduced model (17)-(20)). Modelled trajectories of COVID-19 deaths (black) and cumulative percentage infected (blue). Dots are data for daily reported deaths: fitted
(green); out-of-sample (red). Basic reproduction numbers under control (Rc) displayed in shallow panels underneath the main plots. Left panels represent fitted segments as
solid curves and projected scenarios as dashed. Right panels prolong those projections further in time assuming RcðtÞ ¼ R0. Input parameters: progression from E to I

(d ¼ 1=5:5 per day); recovery (c ¼ 1=4 per day); relative infectiousness between E and I stages (q ¼ 0:5); and IFR (/ ¼ 0:9%). Initial basic reproduction numbers, coefficients
of variation and control parameters estimated by Bayesian inference (estimates in Table 1). Fitted curves represent best fitting trajectories and shades are 95% credible
intervals generated from 10;000 posterior samples.
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et al., 2020). Variable connectivity is slightly better supported in
this case, although the reality most likely combines the two forms
of heterogeneity.

Note that while we report CV in all fits, our method is not pur-
posed to estimate levels of heterogeneity solely in susceptibility or
connectivity as a goal. Because the two forms of heterogeneity
have similar effects on epidemic trajectories, separating relative
contributions would pose an identifiability problem that our
approach does not address. Each heterogeneity model we consider
assumes that there is no heterogeneity of the other kind. From fit-
ting these two extremes, however, we conclude that they are
equally able to fit data and have similar consequences for metrics
of interest and projections. Hence a decomposition is not necessary
for our purposes.

Given the estimated values for R0 and CV (m) we derive the nat-
ural HIT through formulas (14) or (22) as appropriate, obtainingH

in the range 25� 27% in England, and 26� 29% in Scotland. With
the homogeneous model, the inferences would be considerably
higher,H ¼ 63% in England and in the range 66� 67% in Scotland,
as in early expectations (Kwok et al., 2020).
6

We then prolong model trajectories (dashed curves) for another
4 months (until 1 June 2021) to begin comparisons with data
beyond fitted period (red). All models project more deaths than
observed, as expected given that UK initiated a mass vaccination
programme in late 2020 which would have started impacting the
epidemic by February 2021. With reduced models adopted here,
implementation of vaccination is not straightforward but in Sup-
plementary Material we replicate the fits with explicit gamma dis-
tributions (Section S1) and simulate a crude approximation to the
UK vaccination programme (Figs. S1, S2 and S3). In Section 5.6, we
focus on England and implement vaccination in more detail
according to data on fully vaccinated people in the nation.

A relevant question at the time of these results was whether
achieved population immunity had been enough to prevent an exit
wave as contact restrictions were lifted from 8 March 2021
onwards culminating with the removal of most restrictions by 19
July 2021 (especially in England where this was dubbed ‘‘Freedom
Day”). To assess how each of the models might answer this ques-
tion we plotted the cumulative number of estimated infections
(blue) to determine the percentage of the population infected by



Fig. 5. SARS-CoV-2 transmission in England and Scotland assuming homogeneity. Reduced model (9)-(12) or (17)–(20) with m ¼ 0. Modelled trajectories of COVID-19
deaths (black) and cumulative percentage infected (blue). Dots are data for daily reported deaths: fitted (green); out-of-sample (red). Basic reproduction numbers under
control (Rc) displayed in shallow panels underneath the main plots. Left panels represent fitted segments as solid curves and projected scenarios as dashed. Right panels
prolong those projections further in time assuming RcðtÞ ¼ R0. Input parameters: progression from E to I (d ¼ 1=5:5 per day); recovery (c ¼ 1=4 per day); relative
infectiousness between E and I stages (q ¼ 0:5); and IFR (/ ¼ 0:9%). Initial basic reproduction numbers and control parameters estimated by Bayesian inference (estimates in
Table 1). Fitted curves represent best fitting trajectories and shades are 95% credible intervals generated from 10;000 posterior samples.
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June 2021. We find that both nations remain below the natural
herd immunity threshold H (Scotland more than England). Hence,
without vaccination, an exit wave might have been expected. To
visualise its magnitude we include separate panels on the right
where the model is run for approximately 12 months, using as ini-
tial conditions the end conditions from left panels and RcðtÞ ¼ R0.
Here this is done crudely but in Section S1 we explore a range of
vaccination scenarios and in Section 5.6 we refine the projections
in the case of England (the same could be done for Scotland). It
is striking that heterogeneous models project exit waves one order
of magnitude lower (or less) than when homogeneity is assumed, a
feature that we explore more thoroughly in Section 5.6.

In Supplementary Material we also show that these results are
robust to including reinfection (with a risk of 0:1 relative to the
average risk of first infection (Hall et al., 2021)) (Section S2), arriv-
ing at similar HITs, and changing IFR (to 0:7% or 1:0%) (Section S3).
Outcomes agree with the expectation that assuming a lower IFR
results in higher HIT, and a higher IFR results in lower HIT. Less
intuitive is that when we fit the models with a different IFR, all
parameters readjust and exit waves appear relatively conserved
(perhaps slightly slower with lower IFR (higher HIT) and higher
7

with higher IFR (lower HIT), illustrating the fragility of taking HITs
out of context). Similar conserveness is noticed when reinfection is
included. Model selection by AIC continues to favour heteroge-
neous models by large in all scenarios.

5.2. Parameter estimation early in the pandemic

In a pandemic it is important to estimate model parameters
early when data series are short. To test suitability of our methods
for such task, we apply fitting procedures to series of COVID-19
deaths in England and Scotland until 1 July 2020, as Europe was
recovering from the first wave. As an initial exploration we per-
form the fittings as in Section 5.1, estimating all parameters in
(26) except c2 which had no effect prior to November 2020. The
results, displayed in Supplementary Material (Section S4), provide
similar estimates to those obtained with longer series in Section 5.1
except for parameter T2 that determines the slope of contact reac-
tivation following lifting of first lockdown. This preliminary analy-
sis suggests T2 to be very high (or equivalently, slope of contact
reactivation close to zero), presumably due to absence of detect-
able effects of lifting restrictions in such short timeframe. Techni-



Table 1
Model parameters estimated by Bayesian inference based on daily deaths until 1 February 2021 (with reduced models). Model selection based on maximum log-likelihood (LL)
and Akaike information criterion (AIC). Best fitting models have lower AIC scores (bold). Infection fatality ratio, / ¼ 0:9%. Herd immunity threshold (H) calculated from R0 and
CV using formulas (14) or (22), as appropriate. T0 and T2 parameterise linear reduction and increase in transmissibility, respectively, before and after first lockdown (larger T ()
lower slope; Fig. 2).

Heterogeneous susceptibility Heterogeneous connectivity Homogeneous
Median 95% CI Median 95% CI Median 95% CI

Common parameters
c1

a 0:2968 ð0:2958;0:2988Þ 0:2993 ð0:2976;0:3015Þ 0:2751 ð0:2740;0:2772Þ
c2

b 0:5761 ð0:5731;0:5843Þ 0:6601 ð0:6535;0:6661Þ 0:4803 ð0:4776;0:4869Þ
g c 12 f12g 12 f12g 9 f9;10g

m dCoefficient of variation (CV). 1:475 ð1:470;1:487Þ 1:120 ð1:111;1:145Þ 0 –

England
T0 3:616 ð3:480;3:759Þ 0:6549 ð0:3925;0:8821Þ 7:595 ð6:955;7:771Þ
T2 283:5 ð282:4;286:0Þ 302:2 ð295:8;303:9Þ 416:1 ð408:9;418:3Þ
R0 2:709 ð2:701;2:716Þ 2:807 ð2:781;2:827Þ 2:691 ð2:683;2:701Þ
H 26:94% ð26:62%;27:10%Þ 25:48% ð24:61%;25:89%Þ 62:84% ð62:72%;62:98%Þ

Scotland
T0 10:10 ð9:854;10:72Þ 6:934 ð6:460;7:508Þ 11:78 ð11:36;12:58Þ
T2 360:8 ð359:0;364:4Þ 399:9 ð390:2;406:3Þ 540:0 ð524:9;546:9Þ
R0 2:874 ð2:856;2:912Þ 2:981 ð2:948;3:053Þ 2:978 ð2:954;2:995Þ
H 28:29% ð27:88%;28:69%Þ 26:75% ð25:81%;27:52%Þ 66:41% ð66:14%;66:61%Þ

Model selection
LL �3707 �3684 �5893
AIC 7434 7387 11805

a Transmissibility reduction due to lockdown 1.
b Transmissibility reduction due to lockdowns 2 and 3.
c Difference between mean-time-to-death and mean-time-to-recovery (sampled from a continuous interval and reduced to the nearest integer before entering the model).
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cally, the estimation of T2 becomes unsuitable in this framework
since as T2 ! 1 so does uncertainty about its value. One way to
circumvent this problem could be to reparameterise contact reac-
tivation in terms of slope rather than time to reach baseline
cðtÞ ¼ 1. Meanwhile, here we present two scenarios by constrain-
ing T2 (Fig. 6).

Informed by preliminary analysis in Section S4, we first run a
scenario where cðtÞ remains strictly horizontal until end of fitting
period (T2 ! 1, Fig. 7). This assumption appears to alignwith strin-
gency index, a composite measure based on government response
indicators (school closures, workplace closures, travel bans, etc)
developed by Oxford Covid-19 Government Response Tracker
(OxCGRT) (Hale et al., 2020) (blue in Rc panels, scaled to match
lower and higher bounds in our stylised profiles). Support for
heterogeneous models is again very significant according to AIC
scores, and optimal parameter values result in similar HITs to when
T2 was estimated: H ¼ 34% (95% CI, 25� 57%) for heterogeneous
models; and H ¼ 70% (95% CI, 68� 71%) for homogeneous. Com-
pare Tables 2 (T2 ! 1) and S5 (T2 estimated). Second, we run a sce-
nario with finite T2 to inform how estimated parameters might
respond to assumptions about contact reactivation. Assuming
T2 ¼ 120 days (crudely motivated by mobility data (Google,
2020), blue dots in Fig. 8), we find that support for heterogeneous
Fig. 6. Schematic illustration of the factor cðtÞ, representing the effect of NPIs and adap
timing) of the first lockdown as imposed by governments. T0 is the number of days in the
(> T0) is the day the first lockdown begins (informed by data). T2 is the number of day
cðtÞ ¼ 1 and determines the slope that distinguishes the two panels: (a) T2 ! 1; (b) T2
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models persists but estimated coefficients of variation become lar-
ger, reflecting in lower HITs (H ¼ 15% (95% CI, 12� 17%), Table 3).
In absence of further information we might have expected true
parameter values to be somewhere between these two scenarios.
This is supported by results on longer COVID-19 series in Section 5.1
(H in the range 25� 29%, Table 1), which is inside, but towards the
low end, of the range motivated by stringency index.

5.3. Using government response indicators

In this section we use the stringency index, which tracks the
strictness of government policies that restricted people’s behaviour
during the COVID-19 pandemic (Hale et al., 2020), as a main factor
capable to modify transmission over time. In Fig. 9 we show strin-
gency indices for England (red) and Scotland (blue), both scaled to
be 1 in February 2020 and to match an illustrative c1 ¼ 0:2 during
lockdown 1. We refer to this scaled time-dependent index as uðtÞ.

Here we replicate model fittings to series of COVID-19 deaths
until 1 February 2021 using uðtÞ to help determine the overall pro-
file cðtÞ. We assume that until the 1 July 2020 (end of series fitted
in Section 5.2) the profile cðtÞ is entirely determined by uðtÞ. From
then on we include a multiplicative factor that increases linearly
from 1 to reach some value w by the last day of the fitted series.
tive behavioural changes on transmission. L1 represents the known duration (and
series prior to the gradual contact reductions early in the pandemic (estimated). T1

s for the ramp of increasing transmission after first lockdown to return to baseline
¼ 120 days.



Fig. 7. Model fitting to first wave of the SARS-CoV-2 pandemic assuming T2 ! 1. Modelled trajectories of COVID-19 deaths (black) and cumulative percentage infected
(blue). Green dots are data for daily reported deaths. Basic reproduction numbers under control (Rc) displayed in shallow panels underneath the main plots. Government
stringency indices (Hale et al., 2020) traced in blue. Input parameters: progression from E to I (d ¼ 1=5:5 per day); recovery (c ¼ 1=4 per day); relative infectiousness between
E and I stages (q ¼ 0:5); and IFR (/ ¼ 0:9%). Initial basic reproduction numbers, coefficients of variation and control parameters estimated by Bayesian inference (estimates in
Table 2). Fitted curves represent best fitting trajectories and shades are 95% credible intervals generated from 10;000 posterior samples. (a) Individual variation in
susceptibility to infection (model (9)-(12)). (b) Individual variation in exposure to infection (17)-(20). (c) Homogeneous susceptibility and exposure (either model with m ¼ 0).

Table 2
Model parameters estimated by Bayesian inference based on daily deaths until 1 July 2020, assuming constant RcðtÞ from first lockdown onwards (i.e., T2 ! 1). Model selection
based on maximum log-likelihood (LL) and Akaike information criterion (AIC). Best fitting models have lower AIC scores (bold). Infection fatality ratio, / ¼ 0:9%. Herd immunity
threshold (H) calculated from R0 and CV using formulas (14) or (22), as appropriate. T0 and T2 parameterise linear reduction and increase in transmissibility, respectively, before
and after first lockdown (larger T () lower slope; Fig. 6).

Heterogeneous susceptibility Heterogeneous connectivity Homogeneous
Median 95% CI Median 95% CI Median 95% CI

Common parameters
c1

a 0:2471 ð0:2286;0:2647Þ 0:2466 ð0:2288;0:2641Þ 0:2267 ð0:2164;0:2370Þ
g b 15 f15g 15 f15g 15 f15g
m c 1:382 ð0:6952;1:762Þ 0:9684 ð0:5005;1:241Þ 0 –

England
T0 �14:28 ð�14:97;�12:40Þ �14:31 ð�14:97;�12:48Þ �12:75 ð�14:77;�10:62Þ
R0 3:424 ð3:285;3:486Þ 3:426 ð3:291;3:485Þ 3:314 ð3:163;3:477Þ
H 34:48% ð25:15%;56:91%Þ 34:83% ð25:32%;56:47%Þ 69:83% ð68:38%;71:24%Þ

Scotland
T0 �2:506 ð�4:053;�2:021Þ �2:511 ð�4:072;�2:020Þ �2:547 ð�4:613;�2:020Þ
R0 3:365 ð3:311;3:460Þ 3:366 ð3:313;3:458Þ 3:370 ð3:304;3:505Þ
H 34:09% ð25:30%;56:69%Þ 34:43% ð25:45%;56:24%Þ 70:32% ð69:73%;71:47%Þ

Model selection
LL �1120 �1131 �3380
AIC 2254 2277 6772

a Transmissibility reduction due to lockdown 1.
b Difference between mean-time-to-death and mean-time-to-recovery (sampled from a continuous interval and reduced to the nearest integer before entering the model).
c Coefficient of variation (CV).
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Fig. 8. Model fitting to first wave of the SARS-CoV-2 pandemic assuming T2 ¼ 120 days. Modelled trajectories of COVID-19 deaths (black) and cumulative percentage
infected (blue). Green dots are data for daily reported deaths. Basic reproduction numbers under control (Rc) displayed in shallow panels underneath the main plots. Blue
dots represent UK Google mobility index (Google, 2020). Input parameters: progression from E to I (d ¼ 1=5:5 per day); recovery (c ¼ 1=4 per day); relative infectiousness
between E and I stages (q ¼ 0:5); and IFR (/ ¼ 0:9%). Initial basic reproduction numbers, coefficients of variation and control parameters estimated by Bayesian inference
(estimates in Table 3). Fitted curves represent best fitting trajectories and shades are 95% credible intervals generated from 10;000 posterior samples. (a) Individual variation
in susceptibility to infection (model (9)-(12)). (b) Individual variation in exposure to infection ((17)-(20)). (c) Homogeneous susceptibility and exposure (either model with
m ¼ 0).

Table 3
Model parameters estimated by Bayesian inference based on daily deaths until 1 July 2020, assuming that after first lockdown RcðtÞ begins a gradual return to the baseline R0 at a
fixed rate (corresponding to T2 ¼ 120 days in this case). Model selection based on maximum log-likelihood (LL) and Akaike information criterion (AIC). Best fitting models have
lower AIC scores (bold). Infection fatality ratio, / ¼ 0:9%. Herd immunity threshold (H) calculated from R0 and CV using formulas (14) or (22), as appropriate. T0 and T2

parameterise linear reduction and increase in transmissibility, respectively, before and after first lockdown (larger T () lower slope; Fig. 6).

Heterogeneous susceptibility Heterogeneous connectivity Homogeneous
Median 95% CI Median 95% CI Median 95% CI

Common parameters
c1

a 0:3133 ð0:2989;0:3277Þ 0:3182 ð0:3002;0:3419Þ 0:2358 ð0:2291;0:2419Þ
g b 15 f15g 15 f13;14;15g 17 f17g
m c 2:521 ð2:369;2:653Þ 1:822 ð1:681;2:011Þ 0 –

England
T0 �14:79 ð�14:991;�13:922Þ �14:815 ð�14:994;�13:952Þ �11:51 ð�13:00;�10:17Þ
R0 3:438 ð3:380;3:470Þ 3:451 ð3:383;3:533Þ 3:017 ð2:940;3:109Þ
H 15:46% ð14:06%;17:15%Þ 14:97% ð12:55%;17:29%Þ 66:85% ð65:99%;67:84%Þ

Scotland
T0 �2:253 ð�3:033;�2:010Þ �2:229 ð�2:930;�2:007Þ �4:407 ð�5:651;�4:017Þ
R0 3:308 ð3:263;3:358Þ 3:319 ð3:268;3:388Þ 3:234 ð3:194;3:302Þ
H 15:01% ð13:68%;16:74%Þ 14:53% ð12:22%;16:77%Þ 69:08% ð68:69%;69:71%Þ

Model selection
LL �951:7 �960:5 �3308
AIC 1917 1935 6627

a Transmissibility reduction due to lockdown 1.
b Difference between mean-time-to-death and mean-time-to-recovery (sampled from a continuous interval and reduced to the nearest integer before entering the model).
c Coefficient of variation (CV).
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Fig. 9. Government stringency index. To facilitate visual comparisons, raw indices (Hale et al., 2020) were scaled so they would both be 1 in February 2020 and 0:2 during
lockdown 1. The resulting time-dependent uðtÞ are shown for England (red) and Scotland (blue).

Fig. 10. SARS-CoV-2 transmission constrained by government stringency index. (a) individual variation in susceptibility to infection; (b) individual variation in exposure
to infection; (c) assuming homogeneity. Modelled trajectories of COVID-19 deaths (black) and cumulative percentage infected (blue). Green dots are data for daily reported
deaths. Basic reproduction numbers modified by the stringency index (Hale et al., 2020) (Rc) displayed in shallow panels underneath the main plots. Input parameters:
progression from E to I (d ¼ 1=5:5 per day); recovery (c ¼ 1=4 per day); relative infectiousness between E and I stages (q ¼ 0:5); and IFR (/ ¼ 0:9%). Initial basic reproduction
numbers, coefficients of variation and control parameters estimated by Bayesian inference (estimates in Table 4). Fitted curves represent best fitting trajectories and shades
are 95% credible intervals generated from 10;000 posterior samples.
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Parameters c1 and w are estimated. In the case of Scotland this was
not sufficient to allow acceptable fits. Looking at Fig. 9 we notice
that the stringency index for Scotland shows no signal for the sec-
ond lockdown which happened mostly throughout November
2020 (visible in the stringency index for England). Both death ser-
ies, however, show a clear reversal in epidemic growth around that
time. Presumably restrictions imposed by the government in Eng-
land might have affected Scotland due to mobility across the bor-
der and behavioural influences. To enable fittings to the two
nations we modify the Scottish stringency to resemble the English
from the 1 July 2020 onwards. The results are provided in Fig. 10
and Table 4.

The quality of these fits is not as good as when we used a sty-
lised transmission modifier cðtÞ in Section 5.1, presumably because
it does not account as flexibility for behavioural factors other than
those resulting from government restrictions. Nevertheless the
results remain consistent also in this scenario. Using the stringency
index as outlined in this section the heterogeneous models are
again better supported by the data according to AIC, and we
estimate H in the range 27� 31% in England and 31� 36% in
11
Scotland for heterogeneous models, while 58% is obtained for
England and 65% for Scotland when homogeneity is assumed.

Overall this analysis suggests that, in the eventuality of future
pandemics, our models, with more or less stylised mitigations,
can be used consistently at differently stages as the epidemic
unfolds. This study of England and Scotland demonstrates that
although applications will always benefit from knowledge of
time-dependent effects on transmission, considerable progress
can be made by model-based inference before detailed measure-
ments of such factors are available. It is also possible for sensibly
designed stylised models to perform better than those constrained
by incomplete information. Inferences should be subsequently
tested, however, and assumptions improved as more data becomes
available.

At this stage, our parameter inferences can be confronted with
several types of empirical estimates. First, the basic reproduction
numbers estimated here (in the order of R0 ¼ 3) align with
those from numerous independent studies (e.g., Flaxman et al.,
2020; Hilton and Keeling, 2020; Kwok et al., 2020). Second, the
transmission reduction due to first lockdown, 70� 80%



Table 4
Model parameters estimated by Bayesian inference with transmission constrained by a government stringency index (Hale et al., 2020). Model selection based on maximum log-
likelihood (LL) and Akaike information criterion (AIC). Best fitting models have lower AIC scores (bold). Infection fatality ratio, / ¼ 0:9%. Herd immunity threshold (H) calculated
from R0 and CV using formulas (14) or (22), as appropriate. w accounts for increases in transmission since the end of lockdown 1 due to factors other than government response.

Heterogeneous susceptibility Heterogeneous connectivity Homogeneous
Median 95% CI Median 95% CI Median 95% CI

Common parameters
c1

a 0:2808 ð0:2806;0:2814Þ 0:2626 ð0:2624;0:2634Þ 0:2345 ð0:2343;0:2346Þ
g b 17 f17g 16 f16g 16 f16g
m c 1:314 ð1:309;1:320Þ 0:8298 ð0:8272;0:8447Þ 0 –

England
w 2:430 ð2:427;2:434Þ 2:339 ð2:338;2:345Þ 2:096 ð2:094;2:096Þ
R0 2:336 ð2:334;2:337Þ 2:398 ð2:398;2:400Þ 2:356 ð2:354;2:358Þ
H 26:74% ð26:58%;26:87%Þ 30:78% ð30:25%;30:90%Þ 57:56% ð57:52%;57:59%Þ

Scotland
w 1:575 ð1:571;1:578Þ 1:540 ð1:540;1:542Þ 1:430 ð1:429;1:437Þ
R0 2:750 ð2:748;2:753Þ 2:821 ð2:820;2:833Þ 2:878 ð2:876;2:879Þ
H 31:00% ð30:83%;31:15%Þ 35:36% ð34:76%;35:58%Þ 65:26% ð65:23%;65:27%Þ

Model selection
LL �5801 �5788 �6220
AIC 11616 11589 12452

a Transmissibility reduction due to lockdown 1.
b Difference between mean-time-to-death and mean-time-to-recovery (sampled from a continuous interval and reduced to the nearest integer before entering the model).
c Coefficient of variation (CV).

Table 5
Contact pattern studies used in this review.

Dataset citation

1 2008_Mossong_BE Mossong et al. (2008)
2 2008_Mossong_EU Mossong et al. (2008)
3 2008_Mossong_IT Mossong et al. (2008)
4 2008_Mossong_LU Mossong et al. (2008)
5 2008_Mossong_NL Mossong et al. (2008)
6 2008_Mossong_OT Mossong et al. (2008)
7 2008_Mossong_PL Mossong et al. (2008)
8 2008_Mossong_PT Mossong et al. (2008)
9 2008_Mossong_UK Mossong et al. (2008)

10 2009_Hens_BELGIUM Hens et al. (2009)
11 2010_Willem_BELGIUM Willem et al. (2012)
12 2011_Horby_Vietnam Horby et al. (2011)
13 2015_Beraud_France Béraud et al. (2015)
14 2015_Grijalva_Peru Grijalva et al. (2015)
15 2016_Litvinova_Russia Litvinova et al. (2019)
16 2017_Leung_HongKong Leung et al. (2017)
17 2017_Melegaro_Zimbabwe Melegaro et al. (2017)
18 2019_Zhang_China Zhang et al. (2020)
19 2020_Mahikul_Thailand Mahikul et al. (2020)
20 2015_Dodd_ZambiaAndSA Dodd et al. (2015)
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(i.e., c1 between 0:2 and 0:3) is in agreement with direct contact
measurements (Jarvis et al., 2020). Third, the estimated time from
detectable infection to death (1=cþ g, between 10 and 20 days)
agrees with (Verity et al., 2020; Wood, 2021), more so when
heterogeneity models are used. Forth, our time-dependent trans-
mission profiles, cðtÞ (parameterised by T0 and T2), align well
with the stringency index (Hale et al., 2020) and might align even
better with some hybrid indicator combining government mea-
sures with voluntary adaptive behavioural changes (as captured
by mobility patterns tracked by Google). Finally, the coefficient
of variation (m), the main novelty of this study, is assessed in a
dedicated section (Section 5.4).

5.4. Coefficients of variation from empirical studies

5.4.1. Contact surveys
Contact patterns provide one of the easiest sources of hetero-

geneity to study directly. One approach is to use large-scale diary
experiments to collect self-reported logs of close or physical con-
tact from study participants. In this section we show data from
several of these contact-pattern studies, listed in Table 5. In
Fig. 11 we show gamma-fits for the contact distribution of each
study on a log scale, along with the CV for each empirical distribu-
tion. In Supplementary Material we show that lognormal distribu-
tions provide considerable worse fits (Fig. S15).

Irrespective of fits, the empirically measured contact distribu-
tions reveal CV between 0:7 and 1:5 (depending on study and set-
ting; mean 0:9, standard deviation 0:2).

In addition to the magnitude of individual variation in connec-
tivity, the time scale of that variation is another important deter-
minant for the effect of selection in accelerating the acquisition
of population immunity (Tkachenko et al., 2021). The referenced
studies typically report contact patterns for individuals over a very
short (e.g., 1-day) period which is insufficient for assessing persis-
tence of the measured variation. One of the studies (Hens et al.,
2009) made an extra step and measured contact patterns for each
individual on two different days (one weekday and one weekend
day). In Fig. 12, we show fits for contact patterns by these two days
individually, and for the average. The CV for the contact hetero-
geneity that persists over the two days is approximately 1:1 (in
contrast with the larger 1:4 or 1:6 for each day alone).
12
For a heterogeneous model of an epidemic unfolding over a
timescale of years, local dynamics are driven by assumptions about
heterogeneity in short-term (e.g., week-long) averages in contact
patterns, while global dynamics depend on assumptions about per-
sistence of heterogeneity in those short-term averages over the
timescale of the simulation. However, these long-term averages
are frequently not evaluated directly by contact diary experiments.

One way to estimate persistent contact heterogeneity from
below is to bin contact data by age groups, assuming for example
that heterogeneity in contact patterns which persists in contact
data after binning in 5-year age groups represents population-
level heterogeneity in contact patterns that is persistent on multi-
year time scales. Of course, this approach only captures heterogene-
ity mediated by age; i.e., it would only capture the full extent of
heterogeneity in contact patterns if there was no within-age-
group persistent variation in contact patterns. As such we should
expect age-binned contact data to underestimate the level of per-
sistent heterogeneity in contact patterns (Britton et al., 2020), per-
haps quite substantially. In Fig. 13 we show the effect on CV of



Fig. 11. Gamma fits for the included contact surveys. For each dataset in Table 5, we plot the empirical distribution and report its CV, as well as the best-fit gamma
distribution.

Fig. 12. Persistence of contact heterogeneity. For this dataset, contact distributions are available for two different diary days for each participant. When averaging over
these two separate diary days, the contact distribution CV is 17� 28% lower.
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binning the data from the studies in Table 5 in 1- and 10-year age
groups, respectively. Generally, binning by larger periods tends to
reduce heterogeneity more, although 1-year binning is sufficient
to bring the results of all studies to values below our model-
based inference of persistent heterogeneity based on epidemic tra-
jectories (CV ¼ 1:1 for England and Scotland, as in Table 1, hetero-
geneous connectivity). When CV is artificially reduced by averaging
processes such as these, models based on the resulting age-
structuredmatrices are likely to overestimate the size of epidemics.
13
5.4.2. Contact tracing
Contact-tracing data can also be used to describe heterogeneity

in transmission by measuring directly the number of secondary
cases attributed to each infected individual. Distributions of indi-
vidual infectivity can then be characterised as in Lloyd-Smith
et al. (2005) who have analysed several pathogens including
SARS-CoV-1. The authors found the measured distributions to be
highly skewed around R0, with a CV of approximately 2:6 for
SARS-CoV-1. Adam et al. (2020) conducted one of the earlier such



Fig. 13. The effect of binning by age. Each linked pair represents one contact
dataset; the height of the red dot shows the CV of the contact distribution when
ages are binned in 1 year buckets, while the height of the blue dot shows the CV of
the contact distribution when binned in 10 year buckets.

Fig. 14. Herd immunity threshold and epidemic final size with gamma
distributed susceptibility and exposure to infection. Curves generated using
models (9)-(12) (dark tones) and (17)–(20) (light tones) with approximate R0 ¼ 3:
herd immunity threshold given by (14) and (22) (black and grey, respectively); final
size of unmitigated epidemics given implicitly by (28) and (29) (dark and light blue,
respectively). Vertical lines indicate coefficients of individual variation from the
literature and this study: susceptibility to SARS-CoV-2 (black) (England and
Scotland 1:48, this study Table 1); connectivity for SARS-CoV-2 (grey) (England
and Scotland 1:12, this study Table 1); connectivity (solid orange) (mean 0.93,
standard deviation 0:19, as reviewed in Section 5.4.1); infectivity for SARS-CoV-2
(dashed orange) (Hong Kong 2:09 (Adam et al., 2020)); infectivity for SARS-CoV-1
(dashed red) (Singapore 2:62, Beijing 2:64 (Lloyd-Smith et al., 2005)).
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studies for SARS-CoV-2 (there are now many more but a review of
this literature is beyond the scope of this work). The authors esti-
mate parameters that correspond to a CV around 2:1. These studies
traditionally assume a negative binomial model and parameterise
the resulting distributions by a dispersion parameter k. From that
we derived the corresponding CVs as the square root of the vari-
ance (calculated as Rcð1þRc=kÞ) divided by the mean Rc.

Estimates of CV obtained from contact-tracing data are larger
(roughly twice) those resulting from contact surveys (Sec-
tion 5.4.1), presumably because they capture variation in infec-
tiousness as well as connectivity and, without further
information, the two causes are inseparable.

5.5. Herd immunity thresholds and epidemic sizes

Fig. 14 shows the expected downward trends in the natural
herd immunity threshold H for SARS-CoV-2 as coefficients of vari-
ation of the gamma distribution increase (formulas (14) and (22))
considering an approximate basic reproduction number of R0 ¼ 3
(black and grey curves). Final sizes of the corresponding unmiti-
gated epidemics (R�) are shown in blue. In contrast with H, the
final size R� cannot be derived explicitly but can be formulated
implicitly as

ð1� R�Þm2 ðm2 R0 R� þ 1Þ ¼ 1 ð28Þ
for the variable susceptibility model (9)-(12),

ð1� R�Þ2m2 ð2m2 R0 R� þ 1Þ ¼ 1 ð29Þ
for variable connectivity (17)-(20), and

ð1� R�Þ expðR0 R�Þ ¼ 1 ð30Þ
for the homogeneous scenario (Diekmann et al., 2013).

Our inferences for CV from fittings to COVID-19 daily deaths
until 1 February 2021 (Table 1) are marked as vertical grey lines.
We use dark tones for heterogeneous susceptibility and light tones
for heterogeneous connectivity.

We searched the literature and found no quantitative estimates
of individual variation in susceptibility to infections although the
evidence of its existence is documented (Carr et al., 2016). Studies
14
that quantify variation in connectivity are more prolific, as
reviewed in Section 5.4 and marked by the vertical coloured lines
in Fig. 14. Two types of studies were found: contact surveys (solid
orange); and contact tracing (dashed red for SARS-CoV-1, and
dashed orange for SARS-CoV-2). Our estimates (light grey) lie
between those from these two study types.

The natural HIT resulting from our study (Section 5.1) can be
visualised at the intersection between grey vertical lines and grey
HIT curves. In both cases we obtain H � 25� 27% in England, and
H � 26� 29% in Scotland, suggesting conserveness across the two
models (variable susceptibility and variable connectivity). A com-
bined formulation should result in intermediate CV estimates (cur-
rently 1:5 with variable susceptibility only, and 1:1 with variable
connectivity) but similar HIT. We also find that once sufficient
selection has occurred in the pandemic, our inferences become
robust over different time scales (until 1 February 2021, to capture
first and second waves, or until 1 July 2020, to capture the first
pandemic wave only) contrasting with conclusions from
Tkachenko et al. (2021) on the effects of time scales of individual
variation on COVID-19 dynamics.

To explore sensitivity to the type of distribution we show equiv-
alent plots to Fig. 14 with lognormal distributions in Supplemen-
tary Material (Section S5, Fig. S16). The curves for variable
connectivity remain almost unaltered while the decline with
increased CV becomes less steep for variable susceptibility.
5.6. Interpretation and counterfactuals

For over a century, mathematical epidemiologists have realised
that individual variation in susceptibility and exposure to infection
were key to determine the shape of epidemic curves. Models that
underrepresent these forms of variation tend to overpredict epi-
demic sizes and consequently inflate the effects attributed to con-
trol measures. Fig. 15(a) depicts the epidemic curves that might
have resulted from letting the COVID-19 pandemic run unmiti-
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gated in England (results for Scotland would be similar). Using
parameters estimated in this study (Section 5.1), the homogeneous
model (black) would have predicted almost half million deaths in
total (460,000), while accounting for individual variation in sus-
ceptibility (red) would have brought these estimates down to less
than a half (225,000) (individual variation in exposure leading to a
Fig. 15. Counterfactuals. Simulations of the COVID-19 pandemic in England with epi
incrementally: (a) no interventions (unmitigated epidemic); (b) lockdown 1 only (sprin
lockdowns 1, 2 and 3, as well as vaccination from late 2020/ early 2021 (30% vaccine effic
death in both cases). Shallow panels show controlled reproduction numbers as introduce
generated by running model (31)-(39): (red) heterogeneous susceptibility; (black) assum

15
similar result). The maximum number of deaths in a single day
would have been around 16,000 by the homogeneous model and
6,000 when variation was considered. The figure also includes
the real data for England (green), where the number of deaths in
a single day has peaked at slightly over 1,200 in January 2021, a
reduction attributed to adaptive behavioural changes and NPIs
demiological parameters estimated in Section 5.1 and interventions implemented
g 2020); (c) lockdown 1, as well as 2 and 3 (autumn and winter 2020–2021); (d)
acy (VE) against infection (solid); 70% VE against infection (dashed); 90% VE against
d in Section 2.1. Cumulative percentage fully vaccinated (two doses) in blue. Curves
ing homogeneity.
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(but see Wood, 2021). Although, in either case, it seems unimagin-
able that one would let a pandemic like this go unmitigated, the
scenario appears more than twice as dramatic when individual
variation is neglected.

Moving down Fig. 15, panel (b) simulates what would have hap-
pened according to both models with the first lockdown imple-
mented (as it did in the spring 2020), but not the second and
third (in the autumn–winter 2020–2021). In this scenario, the
homogeneous model would have predicted around 320,000 deaths
over an 8-month period around the peak (September 2020 - April
2021), while individual variation in susceptibility would have
brought this projection down to around 135,000. The number of
predicted COVID-19 deaths in a single day would have been
around 4,800 by the homogeneous model and 1,800 when individ-
ual variation was considered. The gap between homogeneous and
heterogeneous models appears to widen as the pandemic pro-
gresses but, more strikingly, the heterogeneous model (with first
lockdown but without second and third) is not far from the real
data (which included lockdowns 2 and 3).

Fig. 15(c) simulates all three lockdowns as estimated in Sec-
tion 5.1, but without vaccines. The third lockdown is assumed to
last until 7 March 2021, after which we let the controlled basic
reproduction number Rc initiate a linear increase towards nor-
malcy (here assumed to reach the original R0 by 19 July 2021),
when most restrictions were removed in England (but see further
discussion below in regards to increased transmission due to viral
evolution). In the absence of vaccination, a large exit wave would
have been expected under the homogeneous model but only a
shallow hump is apparent when individual variation is considered.

Finally, the effects of vaccination are explored in the bottom
panel (Fig. 15(d)). We simulate a vaccination programme according
to the proportion vðtÞ of the population fully vaccinated each day
(two doses was the standard full vaccination schedule at the time)
as recorded in England (blue):

dSðxÞ
dt

¼� k x SðxÞ � vðtÞ SðxÞ; ð31Þ
dEðxÞ
dt

¼k x SðxÞ � d EðxÞ � vðtÞ EðxÞ; ð32Þ
dIðxÞ
dt

¼d EðxÞ � c IðxÞ � vðtÞ IðxÞ; ð33Þ
dRðxÞ
dt

¼ 1� /ð Þ c IðxÞ � vðtÞ RðxÞ; ð34Þ
dSvðxÞ
dt

¼vðtÞ SðxÞ � ð1� nÞ k x SvðxÞ; ð35Þ
dEvðxÞ
dt

¼vðtÞ EðxÞ þ ð1� nÞ k x SvðxÞ � d EvðxÞ; ð36Þ
dIvðxÞ
dt

¼vðtÞ IðxÞ þ d EvðxÞ � c IvðxÞ; ð37Þ
dRvðxÞ
dt

¼vðtÞ RðxÞ þ 1� ð1� fÞ /ð Þ c IvðxÞ; ð38Þ

with force of infection

k ¼ b
N

Z
qðEðxÞ þ EvðxÞÞ þ IðxÞ þ IvðxÞ½ �dx: ð39Þ

The vaccine is assumed to confer either n ¼ 30% (solid curves) or
n ¼ 70% (dashed) protection against infection and
1� ð1� nÞ � ð1� fÞ ¼ 90% against death (Voysey et al., 2020;
Bernal et al., 2021; Sheikh et al., 2021). The implementation of a
programme with these characteristics would have reduced the size
of the third waves as visualised by comparing Figs. 15(c) and 15(d).
According to the homogeneous model the third wave would have
nevertheless remained large (black), while under heterogeneity
the vaccination programme would have brought model trajectories
(red) to the level of the data (green).
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To better assess the dynamics governed by the heterogeneous
model see Fig. 16(a), (b). We separate the scenarios of 30% and
70% vaccine efficacy against infection in two panels. We also allow
Rc to reachavaluedifferent frombaseline after restrictionsare lifted
on the 19 July 2021. In each vaccine efficacy scenario we calculate
the value that Rc would have to reach for the number of COVID-19
deaths generated by the model between 1 February 2021 and 1
November 2021 to match the data (26,129 deaths over the stipu-
lated 9 months). We obtained Rc ¼ 1:23 �R0 in the 30% scenario
and Rc ¼ 1:41 �R0 in the 70% scenario. Subtracting the number of
deaths under vaccination from the corresponding simulationswith-
out vaccination would lead us to conclude that the vaccine would
have prevented around 52;000 and 88;000 deaths in the 30% and
70% vaccine efficacy scenarios, respectively. This calculation is not
possible with the homogeneous model because no vaccination pro-
gramme in thatmodel can fill the gap between projections in Fig. 15
(c) and the reported deaths (see Fig. 16(c), (d)). Scenarios equivalent
to those provided for the heterogeneous model result in epidemic
wavesoneorder ofmagnitude largerwhenheterogeneity is omitted.
Heterogeneousmodels, which performed better than homogeneous
in statistical inferences in this paper (whether based onfittings until
July 2020 or February 2021, with or without reinfection, assuming
different infection fatality ratios, informed by government strin-
gency indices and mobility data or not), also generate projections
in closer agreement with data beyond the fitted period.

In the timeframe of this study, SARS-CoV-2 has undergone sub-
stantial evolution, with dominant genetic types being replaced by
more transmissible variants. Specifically, the larger wave which
peaked in January 2021 was caused by the alpha variant (B.1.1.7),
estimated as up to 30%more transmissible than early viruses, while
the flatter wave in the summer 2021 was mostly due to delta
(B.1.617.2), estimated about 40% more transmissible than alpha
(Public Health England, 2021; Richard et al., 2021; Wang et al.,
2021) and hence 80% more than early types. The crude analysis
in Fig. 16 suggests thatRc might have been 23� 41% higher during
the delta wave than in the early months of the pandemic (baseline
R0). This is consistent with people retaining cautious behaviours
which cancel some of the increases in transmissibility, e.g., a virus
that is 80% more transmissible than the original (wild type)
opposed by 22% reduced transmission due to behavioural change
has Rc ¼ 1:4 �R0. In December 2021, delta was replaced by the
omicron variant (B.1.1.529) (Elliott et al., 2022), assessed as even
more transmissible but less pathogenic, a phenomenon that would
be interesting to analyse with the models presented here but is
beyond scope of the present study.

Throughout the COVID-19 pandemic, our heterogeneity models
have systematically projected lower infection rates in the UK (more
specifically, England and Scotland) than others conforming to more
common approaches (Flaxman et al., 2020; Knock et al., 2021;
Sonabend et al., 2021; Davies et al., 2020; Davies et al., 2021;
Hilton and Keeling, 2020; Keeling et al., 2021a; Keeling et al.,
2021b; Moore et al., 2021). This was also noticed in similar analy-
ses featuring Spain and Portugal (Aguas et al., 2020). When we dis-
able individual variation in susceptibility and exposure to infection
we obtain results similar to those presented elsewhere, suggesting
that to be the distinguishing feature that keeps our models from
overpredicting infection rates. When mitigations are applied the
discrepancy between homogeneous and heterogeneous trajecto-
ries increases as the pandemic progresses, eventually causing the
rejection of models that lack sufficient heterogeneity. By then,
however, such models would have over-attributed impact to inter-
ventions, and may have induced governments to systematically
make suboptimal decisions by over-weighting benefits in relation
to the costs and collateral damages of control measures. More work
is need to establish to what extent these might have happened in
the COVID-19 pandemic.



Fig. 16. Scenarios allowing transmissibility to increase beyond initialR0 . Simulations of the COVID-19 pandemic in England with epidemiological parameters estimated in
Section 5.1. Larger panels show daily COVID-19 deaths in England while shallow panels underneath show the corresponding controlled reproduction numbers as introduced
in Section 2.1. (a,b) heterogeneous susceptibility model: without vaccination (red); and with cumulative vaccination as per blue dots (green curve); (c,d) homogeneous
model: without vaccination (black); and with vaccination (green curve). Dashed curves represent cumulative percentage infected in the respective colours. Reported COVID-
19 deaths are represented by green dots. Two scenarios are considered for VE against infection: 30% (a,c); and 70% (b,d). VE against death is fixed at 90%. Curves generated by
running model (31)-(39).
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6. Limitations of the study

We have presented an original approach to modelling pan-
demics that includes inference of individual variation from its
response to selection and enables reliable projections based on ser-
ies of daily counts of disease outcomes (deaths in this case, but it
could have been hospitalisations, reported infections, or a combi-
nation of multiple data streams) complemented by minimal infor-
mation about interventions (Sections 5.1 and 5.2). Future
developments might integrate more detailed data about interven-
tions, such as NPIs and vaccines, the emergence and spread of new
variants, individual variation in vulnerability to infection due to
age, comorbidities or other factors, seasonal dynamics, susceptibil-
ity replenishment through waning immunity or birth and deaths,
and interactions among these and other processes. Based on explo-
rations initiated here (Sections 5.3 and 5.6) we expect our results
to be robust to such extensions given abounding agreements with
empirical evidence from independent sources (Section 5.4 and 5.5).
Specifying more detail into the models does not necessarily enable
more accurate predictions, but there are often other reasons, such
as informing the design of targeted interventions, for such develop-
ments (Mishra et al., 2020). Although those extensions are beyond
the scope of the current paper they are sometimes essential in
specific circumstances.

Another aspect where this work may fall short of expectations,
and we hope to stimulate further research, is in the treatment of
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uncertainty. Our inferences result in noticeably narrow credible
intervals which may inadvertently suggest overconfidence. Factors
that may have contributed to this include the lack of account for
uncertainty around some input parameters (such as incubation
period, recovery rate and infection fatality ratio) which we assume
at fixed values taken from the literature, the absence of stochastic-
ity along individual trajectories (although we consider between
individual variation) and the choice of a particular Monte Carlo
algorithm implemented in MATLAB (Stapor et al., 2018) while
alternatives are always worth exploring given the rapid develop-
ment of MCMC methods (although we have replicated a sample
of fittings with other algorithms in Stan and obtained similar
results). Given the wide discrepancy between heterogeneous and
homogeneous model outputs and the consistency across a spec-
trum of scenarios, however, methodological improvements along
these lines are not expected to affect the conclusions of this study.
They may nevertheless alter the confidence on particular metrics
being estimated.

7. Discussion and conclusion

The conclusions of thiswork applymuchbeyondCOVID-19. Indi-
vidual variation in thepropensity to acquire infectionshasmany fac-
tors. Individuals differ in genetic background, the local environment
they live in, and social activity, inways that affect their susceptibility
and exposure to many infectious diseases. Immunological studies
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identify local environmental conditions as key in shaping thehuman
immune system (Carr et al., 2016), while social inequality is proba-
bly a main driver (Cevik and Baral, 2021). Studies designed to iden-
tify specific factors and characterise their modes of action are key,
not necessarily to inform the development of more predictive mod-
els but primarily to help focusing interventions on those individuals
who need more protection. Notwithstanding these studies being
conducted, there will always remain some unobserved variation
and, for the sake of model predictability, all variation responding
to selection by natural infection must be accounted for to prevent
biased outputs. For this reason we took the inverse approach of
quantifying selectable variation by fitting fairly generic models to
epidemic curves. We used the COVID-19 pandemic in England and
Scotland to test the approach. We estimate coefficients of variation
for variable connectivity (around 1:1) in agreement with empirical
studies of contact patterns, resulting in natural herd immunity
thresholds around 25� 28%. For variable susceptibility we are not
aware of available data specific to human COVID-19 to immediately
compare our inferences (CV around 1:5, leading to herd immunity
thresholds around 27� 29%).

The natural herd immunity threshold studied here (H) describes
a ceiling for epidemic growth formulated in terms of the basic repro-
ductionnumber (R0) and coefficients of individual variation in traits
that are under selection by the natural force of infection (namely,
susceptibility and exposure), filling a gap inmathematical epidemi-
ology. While R0 is indicative of the early growth of an epidemic, it
says little about the final size and the height of the peak, which are
strongly dependent on types of individual variation that decrease
transmission over time (see also Brauer, 2018).H accounts for that
variation enabling more accurate predictions of how large an epi-
demic might be, but it is a theoretical framework to the extent that
R0 is a theoretical framework. H changes if the parameters that
determine its value change. Most notably, natural changes in R0

through time, which can happen due to seasonal forces or viral evo-
lution, will manifest inH. In particular, the percentage of the popu-
lation immune required to prevent sustained epidemic growthmay
become higher than the initially estimated H if we enter a high-
transmission season or if the virus evolves towards higher
transmissibility.

The UK experienced a first wave of the wild type virus in the
spring 2020 (low-to-moderate transmission season but highly sus-
ceptible population) and initiated a second wave in the autumn of
the same year (presumably driven by seasonality). The wave was
subsiding (due to acquired immunity and contact restrictions)
when a more transmissible variant (alpha) emerged, reaccelerating
epidemic growth and becoming dominant by January 2021. By the
end of January 2021, this wave was retracting again. Levels of
infection and disease were especially low throughout April-May
2021 but this was somewhat altered by an even more transmissi-
ble variant (delta) that become dominant by the end of May 2021.
The delta variant, which ravaged parts of the world (such as India,
where it was first detected), maintained moderate levels of infec-
tion and disease in the UK throughout the summer and autumn
2021 (immunity due to previous infection and vaccination having
a key role in this outcome). By the time this study was completed
(November 2021), a new variant was being detected (omicron,
associated with higher transmissibility, lower incubation period
and lower pathogenicity) but is beyond the scope of this paper.

Although our models have not been developed to estimate
variant-specific parameters (except for the wild type), they can
give an indication of which parameter ranges are compatible with
the transmission dynamics in each nation at the time a particular
variant was dominant. In England, assuming an infection fatality
ratio of 0:9%, our heterogeneous models estimate H for wild type
in the range 25� 27% (R0 around 2:7). Assuming alpha 30% more
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transmissible, and delta 40%more transmissible than alpha (Public
Health England, 2021), we obtain H in the range 30� 33% (R0

around 3:6) for alpha, and 36� 40% (R0 around 5:0) for delta.
The estimated cumulative infected percentage is close to 25% by
November 2021, suggesting that the nation was then entering
the range estimated for the natural herd immunity threshold for
wild type SARS-CoV-2 (assuming acquired immunity to be effec-
tive across variants), but remained 5% and 11% below threshold
for alpha and delta variants, respectively. Adding that almost
70% of the population had been fully vaccinated by then, it might
have been reasonable to expect herd immunity to be achieved soon
for those variants as well. This was happening just prior to the
rapid rise of the omicron variant by December 2021.

In Scotland, by the same assumptions, we estimate H in the
range 26� 29% (R0 around 2:9) for the wild type, 31� 34% (R0

around 3:8) for alpha, and 37� 41% (R0 around 5:3) for delta,
where the infection fatality ratio of 0:9% would suggest a cumula-
tive infected percentage close to 20% by November 2021. In this
case, the nation remained 6% below the natural herd immunity
threshold for the wild type, 11% for alpha, and 17% for the delta
variant. As in England, though, it is plausible the addition of vacci-
nation coverage would have brought the nation to the herd immu-
nity threshold for the three SARS-CoV-2 types, but more research is
needed to determine this with satisfactory confidence.

These figures are for the scenario where the IFR is 0:9% and
should be adapted if different assumptions are made about this
metric, but explorations reported in Supplementary Material sug-
gest that general tendencies will not be affected. Also worth noting
that although neither the wild type nor the alpha variant remained
in circulation by November 2021, it is of both theoretical and prac-
tical interest to detail the mechanisms that resulted in their elim-
ination. In particular, our analyses suggest that variant-specific
naturally acquired immunity had a much larger role than what
might have been expected according to models that take less
account of individual variation in susceptibility and exposure to
infection (recall that models that assume homogeneity inflate herd
immunity thresholds to 60% and higher). More generally, hetero-
geneity affects competition mechanisms and measures of relative
fitness between variants (Gomes et al., 2019), and efficacy of vac-
cines over time (Gomes et al., 2016; Gomes, 2020), in ways that
are yet to be considered for COVID-19 (Bushman et al., 2021;
Althaus et al., 2021; Thomas et al., 2021).

Finally, the maintenance of herd immunity is a dynamic process
(Gomes, 2021). Immune individuals lose their immunity or die
while new susceptibles are born. Further infections and vaccina-
tions replenish population immunity maintaining infection rates
at an endemic equilibrium – the herd immunity threshold. This
equilibrium is precarious in the sense that it is sensitive to viral
evolution and demographic change, and may be temporarily
eroded by seasonality (Bacaer et al., 2009) in a pattern exhibited
by many common air-borne or vector-borne infectious diseases.
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